游客
题文

如图,已知△ABC的三个顶点分别为A(2,3)、B(3,1)、C(-2,-2)。
(1)请在图中画出△ABC关于y轴的轴对称图形△DEF(A、B、C的对应点分别是D、E、F),并直写出D、E、F的坐标。
(2)求四边形ABED的面积。

科目 数学   题型 解答题   难度 中等
知识点: 对称式和轮换对称式
登录免费查看答案和解析
相关试题

解方程组:

如图, A B C 是一张锐角三角形的硬纸片. A D 是边 B C 上的高, B C = 40 c m A D = 30 c m .从这张硬纸片剪下一个长 H G 是宽 H E 2 倍的矩形 E F G H .使它的一边 E F B C 上,顶点 G H 分别在 A C A B 上. A D H G 的交点为 M

(1)求证: A M A D = H G B C
(2)求这个矩形 E F G H 的周长.

如图,在平面直角坐标系中,点A的坐标为(1,,△AOB的面积是
(1)求点B的坐标;
(2)求过点A、O、B的抛物线的解析式;
(3)在(2)中抛物线的对称轴上是否存在点C,使△AOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;
(4)在(2)中x轴下方的抛物线上是否存在一点P,过点P作x轴的垂线,交直线AB于点D,线段OD把△AOB分成两个三角形.使其中一个三角形面积与四边形BPOD面积比为2:3?若存在,求出点P的坐标;若不存在,请说明理由.

如图,点A,B,C,D在⊙O上,AB=AC,AD与BC相交于点E,AE=ED,延长DB到点F,使FB=BD,连接AF.
(1)证明:△BDE∽△FDA;
(2)试判断直线AF与⊙O的位置关系,并给出证明.

某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.
(1)该顾客至少可得到_____元购物券,至多可得到_______元购物券;
(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号