已知△ABC中,A,B,C所对的边分别为a,b,c,已知m=(sin C,sin Bcos A),n=(b,2c),且m·n=0.
(1)求A的大小;
(2)若a=2,c=2,求△ABC的面积S的大小.
(本小题满分7分)选修4-2:矩阵与变换
已知矩阵,其中
R,若点P(1,1)在矩阵A的变换下得到点P′(0,-3),求矩阵A的特征值及特征向量.
已知函数的定义域为
.
(Ⅰ)求实数的值;(Ⅱ)探究
是否是
上的单调函数?若是,请证明;若不是,请说明理由;(Ⅲ)求证:
,
(其中
为自然对数的底数).
已知抛物线C的方程为,A,B是抛物线C上的两点,直线AB过点M
。(Ⅰ)设
是抛物线上任意一点,求
的最小值;(Ⅱ)求向量
与向量
的夹角(O是坐标原点);(Ⅲ)在
轴上是否存在异于M的一点N,直线AN与抛物线的另一个交点为D,而直线DB与
轴交于点E,且有
?若存在,求出N点坐标;若不存在,说明理由.
(本小题满分13分)设不等式组
确定的平面区域为U,
确定的平面区域为V.(Ⅰ)定义坐标为整数的点为“整点”.
在区域U内任取3个整点,
求这些整点中恰有2个整点在区域V的概率;
(Ⅱ)在区域U内任取3个点,记此3个点在区域V的个数为X,
求X的概率分布列及其数学期望.
(本小题满分13分)
如图,在三棱锥中,侧面
与侧面
均为等边三角形,
,
为
中点.
(Ⅰ)证明:平面
;
(Ⅱ)求二面角的余弦值.