已知函数 y = f x 的反函数.定义:若对给定的实数 a a ≠ 0 ,函数 y = f x + a 与 y = f - 1 x + a 互为反函数,则称 y = f x 满足" a 和性质";若函数 y = f a x 与 y = f - 1 a x 互为反函数,则称 y = f x 满足" a 积性质". (1)判断函数 g x = x 2 + 1 x > 0 是否满足"1和性质",并说明理由; (2)求所有满足"2和性质"的一次函数; (3)设函数 y = f x x > 0 对任何 a > 0 ,满足" a 积性质".求 y = f x 的表达式.
设有极值, (Ⅰ)求的取值范围; (Ⅱ)求极大值点和极小值点.
求函数在区间上的最值.
设函数(1)当时,求的最大值;(2)令,(),其图象上任意一点处切线的斜率≤恒成立,求实数的取值范围;(3)当,,方程有唯一实数解,求正数的值.
已知函数在与时都取得极值 (1)求的值与函数的单调区间 (2)若对,不等式恒成立,求c的取值范围
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号