为提供节约用水,某市按如下规定每月收取水费,若一户居民每月用水不超过20立方米,则每立方米按3元收费;若超过20立方米,前20立方米收费标准不变,超过部分每立方米按5元收费,若某户居民某月用水x立方米.
(1)试用含x的代数式表示这户居民该月应缴的水费(分两种情况).
(2)已知该市小李家1月份用水13立方米,2月份用水22立方米,3月份用水17立方米,求他家一季度应缴纳水费多少元?
如图,△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,连接EC.
(1)求证:AD=EC;
(2)当∠BAC=时,求证:四边形ADCE是菱形.
某市今年的信息技术结业考试,采用学生抽签的方式决定自己的考试内容。规定:每位考生先在三个笔试题(题签分别用代码表示)中抽取一个,再在三个上机题(题签分别用代码
表示)中抽取一个进行考试。小亮在看不到题签的情况下,分别从笔试题和上机题中随机地各抽取一个题签。
(1)用树状图或列表法表示出所有可能的结构;
(2)求小亮抽到的笔试题和上机题的题签代码的下标(例如“”的下表为“1”)均为奇数的概率。
如图,已知直线与直线
相交于点
分别交
轴
两点.矩形
的顶点
分别在直线
上,顶点
都在
轴上,且点
与点
重合.
(1)求的面积;
(2)求矩形的边
与
的长;
(3)若矩形从原点出发,沿
轴的反方向以每秒1个单位长度的速度平移,设移动时间为t(0≤t<3)秒,矩形
与
重叠部分的面积为
,求
关于的函数关系式.
如图:已知AB是⊙O的直径,P为AB的延长线上一点.且BP=AB,C、D是半圆AB的两个三等分点,连接PD.
(1)PD与⊙O有怎样的位置关系?并证明你的结论;
(2)连接PC,若AB=10cm,求由PC,弧CD、PD所围成的图形的面积(结果保留π).
先阅读理解下面的例题,再按要求解答后面的问题
例题:解一元二次不等式>0.解:令y=
,画出y=
如图所示,
由图像可知:当x<1或x>2时,y>0.所以一元二次不等式>0的解集为x<1或x>2.
填空:(1)<0的解集为;
(2)>0的解集为;
用类似的方法解一元二次不等式>0.