游客
题文

如图,以点P(﹣1,0)为圆心的圆,交x轴于B、C两点(B在C的左侧),交y轴于A、D两点(A在D的下方),AD=,其中∠BAC=90°,将△ABC绕点P旋转180°,得到△MCB.

(1)求B、C两点的坐标;
(2)请在图中画出线段MB、MC,并判断四边形ACMB的形状(不必证明),求出点M的坐标;
(3)动直线l从与BM重合的位置开始绕点B顺时针旋转,到与BC重合时停止,设直线l与CM交点为E,点Q为BE的中点,过点E作EG⊥BC于G,连接MQ、QG.请问在旋转过程中∠MQG的大小是否变化?若不变,求出∠MQG的度数;若变化,请说明理由.

科目 数学   题型 解答题   难度 较易
知识点: 对称式和轮换对称式
登录免费查看答案和解析
相关试题

在四边形ABCD中,EFGH分别是ABBCCDDA的中点,顺次连接EFFGGHHE
(1)请判断四边形EFGH的形状,并给予证明;
(2)试添加一个条件,使四边形EFGH是菱形.(写出你添加的条件,不要求证明)

已知=1,求+x-1的值.

(本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分)在Rt△ABC中,∠ACB=90°,BC=30,AB=50.点PAB边上任意一点,直线PEAB,与边ACBC相交于E.点M在线段AP上,点N在线段BP上,EMEN
(1)如图1,当点E与点C重合时,求CM的长;
(2)如图2,当点E在边AC上时,点E不与点AC重合,设APxBNy,求y关于x的函数关系式,并写出函数的定义域;
(3)若△AME∽△ENB(△AME的顶点AME分别与△ENB的顶点ENB对应),求AP长.

(本题满分12分,每小题满分各4分)已知平面直角坐标系xOy(如图1),一次函数的图像与y轴交于点A,点M在正比例函数的图像上,且MOMA.二次函数yx2bxc的图像经过点AM
(1)求线段AM的长;
(2)求这个二次函数的解析式;
(3)如果点By轴上,且位于点A下方,点C在上述二次函数的图像上,点D在一次函数的图像上,且四边形ABCD是菱形,求点C的坐标.

(本题满分12分,每小题满分各6分)如图,在梯形ABCD中,AD//BCABDC,过点DDEBC,垂足为E,并延长DEF,使EFDE.联结BFCDAC
(1)求证:四边形ABFC是平行四边形;
(2)如DE2BE·CE,求证四边形ABFC是矩形.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号