(·辽宁营口)某化妆品专卖店,为了吸引顾客,在“母亲节”当天举办了甲、乙两种品牌化妆品有奖酬宾活动,凡购物满88元,均可得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其它都相同,摇奖者必须从摇奖机中一次连续摇出两个球,根据球的颜色决定送礼金券的多少(如下表):
甲种品牌 化妆品 |
球 |
两红 |
一红一白 |
两白 |
礼金卷(元) |
6 |
12 |
6 |
乙种品牌 化妆品 |
球 |
两红 |
一红一白 |
两白 |
礼金卷(元) |
12 |
6 |
12 |
(1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率;
(2)如果一个顾客当天在本店购物满88元,若只考虑获得最多的礼品卷,请你帮助分析选择购买哪种品牌的化妆品?并说明理由.
如图,在△ ABC中,∠ C=90°, D、 F是 AB边上两点,以 DF为直径的⊙ O与 BC相交于点 E,连接 EF,∠ OFE= ∠ A.过点 F作 FG⊥ BC于点 G,交⊙ O于点 H,连接 EH.
(1)求证: BC是⊙ O的切线;
(2)连接 ED,过点 E作 EQ⊥ AB,垂足为 Q,△ EQD和△ EGH全等吗?若全等,请予以证明;若不全等,请说明理由;
(3)当 BO=5, BE=4时,求△ EHG的面积.
如图,反比例函数 y= 与一次函数 y= k 2 x+ b的图象交于 A(2,4), B(﹣4, m)两点.
(1)求 k 1, k 2, b的值;
(2)求△ AOB的面积;
(3)若 M( x 1, y 1), N( x 2, y 2)是反比例函数 y= 的图象上的两点,且 x 1< x 2, y 1< y 2,指出点 M、 N各位于哪个象限.
如图,在平行四边形 ABCD中,点 E, F, G, H分别在边 AB, BC, CD, DA上, AE= CG, AH= CF,且 EG平分∠ HEF.
(1)求证:四边形 EFGH是菱形;
(2)若 EF=4,∠ HEF=60°,求 EG的长.
某学校为了了解学生对新开设的四种社团活动( A:编织, B:厨艺, C:泥塑, D:劳技)的喜欢情况,在全校范围内随机抽取若干名学生,进行问卷调查(每个被调查的同学必须选择而且只能在这四种活动中选择一项)将数据进行整理并绘制成以下两幅统计图(未画完整).
(1)这次调查中,一共调查了多少名学生?
(2)求出扇形统计图中" D"所对扇形的圆心角的度数,并补全两幅统计图;
(3)若全校有1600名学生,请估计喜欢 B:厨艺的学生有多少名?
某卫视曾播出一期"辨脸识人"节目,参赛选手以家庭为单位,每组家庭由爸爸、妈妈和宝宝组成,爸爸、妈妈和宝宝分散在三块区域,选手需在宝宝中选一个宝宝,然后分别在爸爸区域和妈妈区域中正确找出这个宝宝的父母,不考虑其他因素,仅数学角度思考,已知在某期比赛中有 A、 B、 C、 D四组家庭进行比赛.
(1)选手选择 A组家庭的宝宝,在妈妈区域中正确找出其妈妈的概率是多少?
(2)如果任选一个宝宝(假如选 A组家庭),通过列表或画树形图的方法,求选手至少正确找对宝宝父母其中一人的概率.