(·黑龙江牡丹江)已知四边形ABCD是正方形,等腰直角△AEF的直角顶点E在直线BC上(不与点B,C重合),FM⊥AD,交射线AD于点M.
(1)当点E在边BC上,点M在边AD的延长线上时,如图①,求证:AB+BE=AM;
(提示:延长MF,交边BC的延长线于点H.)
(2)当点E在边CB的延长线上,点M在边AD上时,如图②;当点E在边BC的延长线上,点M在边AD上时,如图③.请分别写出线段AB,BE,AM之间的数量关系,不需要证明;
(3)在(1),(2)的条件下,若BE=,∠AFM=15°,则AM= .
如图,BD是⊙O的直径,A、C是⊙O上的两点,且AB=AC,AD与BC的延长线交于点E.
(1)求证:△ABD∽△AEB;
(2)若AD=1,DE=3,求BD的长.
为迎接市教育局开展的“创先争优”主题演讲活动,某校组织党员教师进行演讲预赛.学校将所有参赛教师的成绩(得分为整数,满分为100分)分成四组,绘制了不完整的统计图表如下:
组别 |
成绩x |
组中值 |
频数 |
第一组 |
90≤x≤100 |
95 |
4 |
第二组 |
80≤x<90 |
85 |
|
![]() |
70≤x<80 |
75 |
8 |
第四组 |
60≤x<70 |
65 |
观察图表信息,回答下列问题:
(1)参赛教师共有 人;
(2)如果将各组的组中值视为该组的平均成绩,请你估算所有参赛教师的平均成绩;
(3)成绩落在第一组的恰好是两男两女四位教师,学校从中随机挑选两位教师参加市教育局组织的决赛.通过列表或画树状图求出挑选的两位教师是一男一女的概率.
五月石榴红,枝头鸟儿歌.一只小鸟从石榴树上的A处沿直线飞到对面一房屋的顶部C处.从A处看房屋顶部C处的仰角为30°,看房屋底部D处的俯角为45°,石榴树与该房屋之间的水平距离为米,求出小鸟飞行的距离AC和房屋的高度CD.
若关于x的一元二次方程x2﹣4x+k﹣3=0的两个实数根为x1、x2,且满足x1=3x2,试求出方程的两个实数根及k的值.
如图,四边形ABCD为菱形,已知A(0,4),B(-3,0).
(1)求点D的坐标;
(2)求经过点C的反比例函数解析式.