如图,抛物线交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3).
(1)求抛物线的函数表达式;
(2)若点P在抛物线上,且,求点P的坐标;
(3)如图b,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,求线段DQ长度的最大值.
已知:如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交与BE的延长线于点F,且AF=DC,连接CF.
(1)求证:D是BC的中点;
(2)当AB与AC有何数量关系时,四边形ADCF为矩形,请说明理由.
如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,点A,B,C的坐标分别为(0,﹣1),(1,﹣1),(5,﹣1)
(1)判断△ABC的形状;
(2)将△ABC绕点C顺时针旋转90°得到△A1B1C,请在网格中画出△A1B1C,并直接写出点A1和B1的坐标;
(3)将△ABC绕线段AC所在直线旋转一周,求所得几何体的表面积.
小明在数学课外小组活动中遇到这样一个“新定义”问题:
定义运算“※”为:a※b=,求1※(﹣4)的值.
小明是这样解决问题的:由新定义可知a=1,b=﹣4,又b<0,所以1※(﹣4)=,
请你参考小明的解题思路,回答下列问题:
(1)计算:3※7;
(2)若15※m=,求m的值;
(3)函数y=4※x(x≠0)的图象大致是 .
A.![]() |
B.![]() |
C.![]() |
D.![]() |
某学校抽查了某班级某月5天的用电量,数据如下表(单位:度):
度数 |
9 |
10 |
11 |
天数 |
3 |
1 |
1 |
(1)求这5天的用电量的平均数;
(2)求这5天用电量的众数、中位数;
(3)学校共有36个班级,若该月按22天计,试估计该校该月的总用电量.
如图1,已知:抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C,经过B,C两点的直线是y=
x-2,连结AC.
(1)求出抛物线的函数关系式;
(2)若△ABC内部能否截出面积最大的矩形DEFC(顶点D、E、F、G在△ABC各边上)?若能,求出在AB边上的矩形顶点的坐标;若不能,请说明理由.
(3)点P(t,0)是x轴上一动点,P、Q两点关于直线BC成轴对称,PQ交BC于点M,作QH⊥x轴于点H.连结OQ,是否存在t的值,使△OQH与△APM相似?若存在,求出t的值;若不存在,说明理由.