如图1,△ABC和△AED都是等腰直角三角形,∠BAC=∠EAD=90°,点B在线段AE上,点C在线段AD上.
(1)请直接写出线段BE与线段CD的关系: ;
(2)如图2,将图1中的△ABC绕点A顺时针旋转角α(0<α<360°),
①(1)中的结论是否成立?若成立,请利用图2证明;若不成立,请说明理由;
②当AC=ED时,探究在△ABC旋转的过程中,是否存在这样的角α,使以A、B、C、D四点为顶点的四边形是平行四边形?若存在,请直接写出角α的度数;若不存在,请说明理由.
如图,有一个三角形的钢架 , , , .请计算说明,工人师傅搬运此钢架能否通过一个直径为 的圆形门?
某地某月 日中午12时的气温(单位: 如下:
22 31 25 15 18 23 21 20 27 17
20 12 18 21 21 16 20 24 26 19
(1)将下列频数分布表补充完整:
气温分组 |
划记 |
频数 |
|
|
3 |
|
|
|
|
|
|
|
|
2 |
(2)补全频数分布直方图;
(3)根据频数分布表或频数分布直方图,分析数据的分布情况.
如图,已知抛物线 与 轴分别交于原点 和点 ,与对称轴 交于点 .矩形 的边 在 轴正半轴上,且 ,边 , 与抛物线分别交于点 , .当矩形 沿 轴正方向平移,点 , 位于对称轴 的同侧时,连接 ,此时,四边形 的面积记为 ;点 , 位于对称轴 的两侧时,连接 , ,此时五边形 的面积记为 .将点 与点 重合的位置作为矩形 平移的起点,设矩形 平移的长度为 .
(1)求出这条抛物线的表达式;
(2)当 时,求 的值;
(3)当矩形 沿着 轴的正方向平移时,求 关于 的函数表达式,并求出 为何值时, 有最大值,最大值是多少?
如图,在 中, , 平分 交 于点 ,作 交 于点 , 是 的外接圆.
(1)求证: 是 的切线;
(2)已知 的半径为2.5, ,求 , 的长.
如图,已知反比例函数 的图象与反比例函数 的图象关于 轴对称, , 是函数 图象上的两点,连接 ,点 是函数 图象上的一点,连接 , .
(1)求 , 的值;
(2)求 所在直线的表达式;
(3)求 的面积.