已知:在直角坐标平面内,△ABC三个顶点的坐标分别为A(0,3),B(3,4),C(2,2)(正方形网格中每个小正方形的边长是一个单位长度)
(1)在备用图(1)中,画出△ABC向下平移4个单位长度得到△AB
C
,点C
的坐标是________.
(2)在备用图(2)中,以点B为位似中心,在网格内画出△AB
C
,使△A
B
C
与△ABC位似,且位似比为2︰1,点C
的坐标是________.
(3)△AB
C
的面积是________平方单位.
如图,已知每个小方格都是边长为1的正方形,我们称每个小正方形的顶点为格点,
以格点为顶点的图形称为格点图形. 图中的△ABC是一个格点三角形.请你在第一象限内画出格点△AB1C1, 使得△AB1C1∽△ABC,且△AB1C1与△ABC的相似比为3:1;
写出B1、C1两点的坐标.
如图一,在△ABC中,分别以AB,AC为直径在△ABC外作半圆和半圆
,其中
和
分别为两个半圆的圆心. F是边BC的中点,点D和点E分别为两个半圆圆弧的中点.
连结
,证明:
;
如图二,过点A分别作半圆
和半圆
的切线,交BD的延长线和CE的延长线于点P和点Q,连结PQ,若∠ACB=90°,DB=5,CE=3,求线段PQ的长;
如图三,过点A作半圆
的切线,交CE的延长线于点Q,过点Q作直线FA的垂线,交BD的延长线于点P,连结PA. 证明:PA是半圆
的切线.
如图一,AB是的直径,AC是弦,直线EF和
相切与点C,
,垂足为D.
求证
;
如图二,若把直线EF向上移动,使得EF与
相交于G,C两点(点C在点G的右侧),连结AC,AG,若题中其他条件不变,这时图中是否存在与
相等的角?若存在,找出一个这样的角,并证明;若不存在,说明理由.
如图,为正方形
对角线AC上一点,以
为圆心,
长为半径的⊙
与
相切于点
.
求证:
与⊙
相切;
若⊙
的半径为1,求正方形
的边长.
列方程解应用题:
随着人们节能意识的增强,节能产品的销售量逐年增加.某地区高效节能灯的年销售量2009年为10万只,预计2011年将达到14.4万只.求该地区2009年到2011年高效节能灯年销售量的平均增长率.