(广安)为了贯彻落实市委市府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A、B两贫困村的计划.现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如下表:
(1)求这15辆车中大小货车各多少辆?
(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.
(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.
为响应习总书记足球进校园的号召,某学校积极开展与足球有关的宣传与实践活动.学生会体育部为了解本校学生对足球运动的态度,随机抽取了部分学生进行调查,并绘制了如下的统计图表(部分信息未给出).
态度 |
频数(人数) |
频率 |
非常喜欢 |
5 |
0.05 |
喜欢 |
0.35 |
|
一般 |
50 |
|
不喜欢 |
10 |
|
合计 |
|
|
(1)在上面的统计表中 , .
(2)请你将条形统计图补充完整;
(3)该校共有学生1200人,根据统计信息,估计爱好足球运动(包括喜欢和非常喜欢)的学生有多少人?
如图,在 中, ,连接 并延长交 的延长线于点 .
(1)求证: ;
(2)若 , .求 的度数.
从 ,1,3这三个数中任取两个不同的数,作为点的坐标.
(1)写出该点所有可能的坐标;
(2)求该点在第一象限的概率.
“鸡兔同笼”是我国古代著名的数学趣题之一.大约在1500年前成书的《孙子算经》中,就有关于“鸡兔同笼”的记载:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔关在一个笼子里,从上面数,有35个头;从下面数,有94条腿.问笼中各有几只鸡和兔?
如图所示,顶点为 , 的抛物线 过点 .
(1)求抛物线的解析式;
(2)点 是抛物线与 轴的交点(不与点 重合),点 是抛物线与 轴的交点,点 是直线 上一点(处于 轴下方),点 是反比例函数 图象上一点,若以点 , , , 为顶点的四边形是菱形,求 的值.