(南充)如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.
求证:(1)△AEF≌△CEB;
(2)AF=2CD.
为庆祝我国首个空间实验室“天宫一号”顺利升空,学校开展了火箭模型制作比赛,如图为火箭模型的截面图,下面是梯形,中间是长方形,上面是三角形.
(1)用a、b的代数式表示该截面的面积S;
(2)当a=2cm,b=3cm时,求这个截面的面积.
解答
(1)化简及求值5(3a2b-2ab2)-4(-2 ab2+3a2b) ,其中a、b满足|a+2|+(b-1)2=0.(2)已知x+y=
,xy=-
.求代数式(x+3y-3xy) -2(xy-2 x-y) 的值.
解方程
(1)2(3-x)=-4x+5
(2)=
+1
阅读:如图1,在△ABC中,3∠ A+∠ B=180°,BC=8,AC=10,求AB的长.
小明的思路:如图2,作BE⊥AC于点E,在AC的延长线上取点D,使得DE=AE,连接BD,易得∠A=∠D,△ABD为等腰三角形,由3∠A+∠B=180°和∠A+∠ABC+∠BCA=180°,易得∠BCA=2∠A,△BCD为等腰三角形,依据已知条件可得AE和AB的长.
解决下列问题:
(1)图2中,AE= ,AB= ;
(2)在△ABC中,∠A,∠B,∠C的对边分别为a、b、c.如图3,当3∠A+2∠B=180°时,用含a,c式子表示b.
如图1,将两块全等的直角三角形纸片△ABC和△DEF叠放在一起,其中∠ACB=∠E=90°,BC=DE=6,AC=FE=8,顶点D与边AB的中点重合.
(1)若DE经过点C,DF交AC于点G,求重叠部分(△DCG)的面积;
(2)合作交流:“希望”小组受问题(1)的启发,将△DEF绕点D旋转,使DE⊥AB交AC于点H,DF交AC于点G,如图2,求重叠部分(△DGH)的面积.