(内江)如图,抛物线与x轴交于点A(,0)、点B(2,0),与y轴交于点C(0,1),连接BC.
(1)求抛物线的函数关系式;
(2)点N为抛物线上的一个动点,过点N作NP⊥x轴于点P,设点N的横坐标为t(),求△ABN的面积S与t的函数关系式;
(3)若且
时△OPN∽△COB,求点N的坐标.
如图,是正三角形
内的一点,且
,
,
.若将
绕点
逆时针旋转后,得到
.
(1)求点
与点
之间的距离;
(2)求
的度数.
.如图,在平行四边形中,过点
作
,垂足为
,连接
,
为线段
上一点,且
.
(1)求证:
∽
;
(2)若
,求
的长.
如图,△ABC与△ADE中,∠C=∠E,∠1=∠2.求证:DE:BC=AE:AC.
二次函数的图象过点A(3,0),B(-1,0)且与y轴交点为C(0,6).
(1)此二次函数的解析式;
(2)求三角形ABC的面积;
(3)若点D位于x轴上方的抛物线上,当△ABD的面积取得最大值时,求D点的坐标.
已知二次函数y= x2 -4x+3.(1)用配方法将y= x2 - 4x+3化成y=a (x-h) 2 +k的形式;
(2)在平面直角坐标系中,画出这个二次函数的图象;
(3)写出当x为何值时,y>0.
(4)写出当
时,直接写出相应y的取值范围.