(绵阳)已知抛物线(
)与y轴相交于A点,顶点为M,直线
分别与x轴、y轴相交于B,C两点,并且与直线MA相交于N点.
(1)若直线BC和抛物线有两个不同交点,求a的取值范围,并用a表示交点M,A的坐标;
(2)将△NAC沿着y轴翻转,若点N的对称点P恰好落在抛物线上,AP与抛物线的对称轴相交于点D,连接CD,求a的值及△PCD的面积;
(3)在抛物线(
)上是否存在点P,使得以P,A,C,N为顶点的四边形是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.
我市一山区学校为部分家远的学生安排住宿,将部分教室改造成若干间住房. 如果每间住5人,那么有12人安排不下;如果每间住8人,那么有一间房还余一些床位,问该校可能有几间住房可以安排学生住宿?住宿的学生可能有多少人?
某企业现有工人80人,平均每人每年可创产值a元.为适应市场经济改革,现决定从中分流一部分人员从事服务行业.分流后企业工人平均每人每年创造产值可增加30%,服务行业人员平均每人每年可创产值2.5a元.要使分流后企业工人的全年总产值不低于原来全年总产值,而且服务行业人员全年创产值不低于原企业全年总产值的一半.假设你是企业管理者,请你确定分流到服务行业的人数.
如果关于x、y的方程组的解满足x>0且y<0,请确定实数a的取值范围.
如图,直线:
与
轴交于点
(4,0),与
轴交于点
,长方形
的边
在
轴上,
,
.长方形
由点
与点
重合的位置开始,以每秒1个单位长度的速度沿
轴正方向作匀速直线运动,当点
与点
重合时停止运动.设长方形运动的时间为
秒,长方形
与△
重合部分的面积为
.
(1)求直线的解析式;
(2)当=1时,请判断点
是否在直线
上,并说明理由;
(3)请求出当为何值时,点
在直线
上;
(4)直接写出在整个运动过程中与
的函数关系式.
已知:在△中,
,
,
于
,
于点
,
、
相交于
.
(1)求的度数;
(2)求证:△≌△
;
(3)探究与
的数量关系,并给予证明.