(·衢州市 第24题 12分)如图,在△ABC中,AB=5,AC=9,S△ABC=,动点P从A点出发,沿射线AB方向以每秒5个单位的速度运动,动点Q从C点出发,以相同的速度在线段AC上由C向A运动,当Q点运动到A点时,P、Q两点同时停止运动,以PQ为边作正方形PQEF(P、Q、E、F按逆时针排序),以CQ为边在AC上方作正方形QCGH.
(1)求tanA的值;
(2)设点P运动时间为t,正方形PQEF的面积为S,请探究S是否存在最小值?若存在,求出这个最小值,若不存在,请说明理由;
(3)当t为何值时,正方形PQEF的某个顶点(Q点除外)落在正方形QCGH的边上,请直接写出t的值.
如图,纸上有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形.
(1)拼成的正方形的面积与边长分别是多少?
(2)你能在3×3方格图中,连接四个点组成面积为5的正方形吗?
(3)你能把十个小正方形组成的图形纸,剪开并拼成正方形吗?若能,请在图中画出图形,并求出它的边长是多少? 若不能请说明理由.
全球气候变暖导致-些冰川融化并消失,在冰川|消失12年后,一种低等植物苔藓,就开始在岩石上生长,每一个苔藓都会长成近似的圆形,苔藓的直径和其生长年限近似地满足如下的关系式:d=7(t≥12),其中d表示苔藓的直径,单位是厘米,t代表冰川消失的时间(单位:年)。
(1)计算冰川消失16年后苔藓的直径为多少厘米?
(2)如果测得一些苔藓的直径是35厘米,问冰川约是在多少年前消失的?
为体现社会对教师的尊重,教师节这一天上午,出租车司机小聪在东西方向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+15,-4,+13,―10,―12,+3,―13,―17.
(1)出车地记为0,最后一名老师送到目的地时,小聪距出车地点的距离是多少?
(2)若汽车耗油量为0.1升/千米,这天上午汽车共耗油多少升?
小刚与小明两位同学利用温差法去测量某座山峰的高度,他们于同一时刻测得山顶温度为-4.2℃,山脚的温度为2.4℃,已知该地区山峰的高度每增加100米,气温大约降低0.6℃,问这座山峰的高度大约是多少米?
在数轴上近似地表示下列各数,并把这些数按从小到大顺序进行排列,用“<”连接。
4,-1.5, 0, ,-π