(·湖南常德)如图,曲线抛物线的一部分,且表达式为:
曲线
与曲线
关于直线
对称。
(1)求A、B、C三点的坐标和曲线的表达式;
(2)过点D作轴交曲线
于点D,连接AD,在曲线
上有一点M,使得四边形ACDM为筝形(如果一个四边形的一条对角线被另一条对角线垂直平分,这样的四边形为筝形),请求出点M的横坐标。
(3)设直线CM与轴交于点N,试问在线段MN下方的曲线
上是否存在一点P,使△PMN的面积最大?若存在,求出点P的坐标;若不存在,请说明理由。
某校为实施国家“营养早餐”工程,食堂用甲、乙两种原料配制成某种营养食品,已知这两种原料的维生素C含量及购买这两种原料的价格如下表:
现要配制这种营养食品20千克,要求每千克至少含有480单位的维生素C.设购买甲种原料x千克.
(1)至少需要购买甲种原料多少千克?
(2)设食堂用于购买这两种原料的总费用为y元,求y与x的函数关系式.并说明购买甲种原料多少千克时,总费用最少?
已知函数轴交点的纵坐标为
,且当
,则此函数的解析式为 .
的图像上有两点
,知
,你能说出
与
有什么关系吗?
(1)已知关于x的一次函数y=(2k-3)x+k-1的图像与y轴交点在x轴的上方,且y随x的增大而减小,求k的取值范围;
(2)已知函数y=(4m-3)x是正比例函数,且y随x的增大而增大,求m的取值范围.
对于任何实数x,点M(x,x-1)一定不在第几象限?