在平面直角坐标系中,我们不妨把纵坐标是横坐标的2倍的点称之为“理想点”,例如点(﹣2,﹣4),(1,2),(3,6)…都是“理想点”,显然这样的“理想点”有有无数多个.
(1)若点M(2,a)是反比例函数(k为常数,
)图象上的“理想点”,求这个反比例函数的表达式;
(2)函数(m为常数,
)的图象上存在“理想点”吗?若存在,请求出“理想点”的坐标;若不存在,请说明理由.
如图, 已知二次函数的图像过点O(0,0), A(4,0),B(),M是OA的中点.
(1)求此二次函数的解析式;
(2)设P是抛物线上的一点,过P作轴的平行线与抛物线交于另一点Q,要使四边形PQAM是菱形,求P点的坐标;
(3)将抛物线在轴下方的部分沿
轴向上翻折,得曲线OB′A(B′为B关于
轴的对称点),在原抛物线
轴的上方部分取一点C,连接CM,CM与翻折后的曲线OB′A交于点D,若△CDA的面积是△MDA面积的2倍,这样的点C是否存在?若存在求出C点的坐标,若不存在,请说明理由.
如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连结BE交AC于点F,连结DF.
(1)证明:△CBF≌△CDF;
(2)若AC=,BD=2,求四边形ABCD的周长;
(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.
)如图,已知⊙O的直径为AB,AC⊥AB于点A,BC与⊙O相交于点D,在AC上取一点E,使得ED=EA.
(1)求证:ED是⊙O的切线.
(2)当OA=3,AE=4时,求BC的长度.
马航MH370失联后,我国政府积极参与搜救.某日,我两艘专业救助船A、B同时收到有关可疑漂浮物的讯息,可疑漂浮物P在救助船A的北偏东53.50方向上,在救助船B的西北方向上,船B在船A正东方向140海里处。(参考数据:sin36.5≈0.6,cos36.5≈0.8,tan36.5≈0.75).
(1)求可疑漂浮物P到A、B两船所在直线的距离;
(2)若救助船A、救助船B分别以40海里/时,30海里/时的速度同时出发,匀速直线前往搜救,试通过计算判断哪艘船先到达P处。
小李从福安通过某快递公司给在上海的外婆寄一盒穆阳水蜜桃,快递时,他了解到这个公司除了收取每次6元包装费外,水蜜桃不超过1kg收费22元,超过1kg,则超出部分每千克收费10元,设该公司从福安到上海快寄水蜜桃的费用为y(元),所寄水蜜桃为x(kg)
(1)求y与x之间的函数关系式;
(2)已知小李给外婆快寄了2.5kg水蜜桃,请你求出这次快寄的费用是多少元?