如图,已知点D在双曲线(
)的图象上,以D为圆心的⊙D与y轴相切于点C(0,4),与x轴交于A,B两点,抛物线
经过A,B,C三点,点P是抛物线上的动点,且线段AP与BC所在直线有交点Q.
(1)写出点D的坐标并求出抛物线的解析式;
(2)证明∠ACO=∠OBC;
(3)探究是否存在点P,使点Q为线段AP的四等分点?若存在,求出点P的坐标;若不存在,请说明理由.
解下列方程:
(1)7-2x=3-4x
(2)3(2x-1)-2(1-x)=0
在Rt△ABC中,∠CAB=90°,AB=AC.
(1)如图①,过点A在△ABC外作直线MN,BM⊥MN于M,CN⊥MN于N.
①判断线段MN、BM、CN之间有何数量关系,并证明;
②若AM=,BM=
,AB=
,试利用图①验证勾股定理
=
;
(2)如图②,过点A在△ABC内作直线MN,BM⊥MN于M,CN⊥MN于N,判断线段MN、BM、CN之间有何数量关系?(直接写出答案)
如图,已知在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=9.
(1)求DC和AB的长;
(2)证明:∠ACB=90°.
如图,∠ABC=∠ADC=90°,M、N分别是AC、BD的中点.求证:MN⊥BD.
已知:如图,△ABC中,AB=AC,∠EAC是△ABC的外角,AD平分∠EAC 。
求证:AD∥BC