抛物线,若a,b,c满足b=a+c,则称抛物线
为“恒定”抛物线.
(1)求证:“恒定”抛物线必过x轴上的一个定点A;
(2)已知“恒定”抛物线的顶点为P,与x轴另一个交点为B,是否存在以Q为顶点,与x轴另一个交点为C的“恒定”抛物线,使得以PA,CQ为边的四边形是平行四边形?若存在,求出抛物线解析式;若不存在,请说明理由.
(1)解不等式组:(2)因式分解:
在科技馆里,小亮看见一台名为帕斯卡三角的仪器,如图所示,当一实心小球从入口落下,它在依次碰到每层菱形挡块时,会等可能地向左或向右落下.
(1)试问小球通过第二层位置的概率是多少?
(2)请用学过的数学方法模拟试验,并具体说明小球下落到第三层位置和第四层
位置处的概率各是多少?
已知与
是反比例函数
图象上的两个点.
(1)求的值;
(2)若点,则在反比例函数
图象上是否存在点
,使得以
四点为顶点的四边形为梯形?若存在,求出点
的坐标;若不存在,请说明理由.
已知,如图,正方形的边长为6,菱形
的三个顶点
分别在正方形
边
上,
,连接
.
(1)当时,求
的面积;
(2)设,用含
的代数式表示
的面积;
(3)判断的面积能否等于
,并说明理由.
学校举办“迎奥运”知识竞赛,设一、二、三等奖共12名,奖品发放方案如下表:
用于购买奖品的总费用不少于1000元但不超过1100元,小明在购买“福娃”和微章前,了解到如下信息:
(1)求一盒“福娃”和一枚徽章各多少元?
(2)若本次活动设一等奖2名,则二等奖和三等奖应各设多少名?