(年云南省)为有效开展阳光体育活动,云洱中学利用课外活动时间进行班级篮球比赛,每场比赛都要决出胜负,每队胜一场得2分,负一场得1分.已知九年级一班在8场比赛中得到13分,问九年级一班胜、负场数分别是多少?
请将下列证明过程补充完整:
已知:如图,点B、E分别在AC、DF上,AF分别交BD、CE于点M、N,.
求证:.
证明:因为(已知),
又因为(),
所以(等量代换).
所以∥(同位角相等,两直线平行),
所以().
又因为(已知),
所以∥().
所以(两直线平行,内错角相等).
所以().
解不等式组:
解不等式,并求它的非负整数解.
(6分)解方程组
已知一次函数的图像经过点M(-1,3)、N(1,5)。直线MN与坐标轴相交于点A、B两点.
(1)求一次函数的解析式.
(2)如图,点C与点B关于x轴对称,点D在线段OA上,连结BD,把线段BD顺时针方向旋转90°得到线段DE,作直线CE交x轴于点F,求的值.
(3)如图,点P是直线AB上一动点,以OP为边作正方形OPNM,连接ON、PM交于点Q,连BQ,当点P在直线AB上运动时,的值是否会发生变化,若不变,请求出其值;若变化,请说明理由.