(本小题满分12分)如右图,已知是边长为2的正方形,
平面
,
,设
,
.
(1)证明:;
(2)求四面体的体积;
(3)求点到平面
的距离.
求经过点A(4,-1),并且与圆相切于点M(1,2)的圆的方程.
如图,P是四边形ABCD所在平面外的一点,四边形ABCD是∠DAB=60°且边长为的菱形,侧面PAD为正三角形,其所在的平面垂直于底面ABCD.若G为AD的中点,
⑴求证:BG⊥平面PAD;
⑵求PB与面ABCD所成角.
如图,在三棱锥P—ABC中,G、H分别为PB、PC的中点,且△ABC为等腰直角三角形,∠B=90°.
⑴求证:GH∥平面ABC;
⑵求异面直线GH与AB所成的角.
分别写出下列命题的逆命题,否命题与逆否命题,并判断其真假:
原命题:已知,若
,则
.
设为奇函数,
为常数.
(Ⅰ)求的值;(Ⅱ)判断
在区间(1,+∞)的单调性,并说明理由;
(Ⅲ)若对于区间[3,4]上的每一个值,不等式
>
恒成立,求实数
的取值范围.