某产品按质量分为10个档次,生产第一档(即最低档次)的利润是每件8元,每提高一个档次,利润每件增加2元,但每提高一个档次,在相同的时间内,产量减少3件。如果在规定的时间内,最低档次的产品可生产60件。
(1)请写出相同时间内产品的总利润
与档次
之间的函数关系式,并写出
的定义域.
(2)在同样的时间内,生产哪一档次产品的总利润最大?并求出最大利润.
已知圆
的圆心
在
轴上,半径为2,直线
被圆
截得的弦长为
,且圆心
在直线
的上方.
(1)求圆
的方程;
(2)设
,
(2≤t≤4),若圆
是
的内切圆,求
边所在直线的斜率(用
表示)
(3)在(2)的条件下求
的面积S的最大值及对应的
值.
记事件A为“直线
与圆
相交”
(1)若将一颗骰子先后掷两次得到的点数分别记为
,求事件A发生的概率
(2)若实数
满足
,求事件A发生的概率.
已知
的顶点
,
的内角平分线BN所在直线方程为
,
边上的中线
所在直线方程为
.
求:(1)顶点B的坐标;
(2)直线BC方程.
从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:
| 质量指标值分组 |
[75,85) |
[85,95) |
[95,105) |
[105,115) |
[115,125) |
| 频数 |
6 |
26 |
38 |
22 |
8 |
(1)在答题卡上作出这些数据的频率分布直方图 (用阴影表示)
(2)估计这种产品质量指标值的平均数及中位数
(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?
某研究机构对高二学生的记忆力x和判断力y进行统计分析,得下表数据
| x |
6 |
8 |
10 |
12 |
| y |
3 |
4 |
6 |
7 |
(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程
;
(2)试根据(1)求出的线性回归方程,预测记忆力为9的同学的判断力.
(
)