某公司的广告费支出x与销售额y(单位:万元)之间有下列对应数据
x |
2 |
4 |
5 |
6 |
8 |
y |
30 |
40 |
60 |
50 |
70 |
(1)画出散点图,并判断广告费与销售额是否具有相关关系;
(2)根据表中提供的数据,用最小二乘法求出y与x的回归方程;
(3)预测销售额为115万元时,大约需要多少万元广告费。
参考公式:回归方程为其中
,
已知:矩形的两条对角线相交于点
,
边所在直线的方程为:
,点
在
边所在直线上.
(1)求矩形外接圆
的方程。
(2)是圆
的内接三角形,其重心
的坐标是
,求直线
的方程 .
如图,四棱锥中,底面是以
为中心的菱形,
底面
,
,
为
上一点,且
.
(1)证明:平面
;
(2)若,求四棱锥
的体积.
直线l经过点(3,2),且在两坐标轴上的截距相等,求直线l的方程.
如图,已知三棱锥A—BPC中,AP⊥PC, AC⊥BC,M为AB中点,D为PB中点, 且△PMB为正三角形。
(Ⅰ)求证:DM∥平面APC;
(Ⅱ)若BC=4,AB=20,求三棱锥D—BCM的体积。
【改编】已知圆,直线
(1)求证:对,直线
与圆
总有两个不同的交点A、B;
(2)求弦AB长最大、最小时直线的方程;
(3)若定点P(1,1)满足,求直线
的方程。