如图,一个圆形游戏转盘被分成6个均匀的扇形区域.用力旋转转盘,转盘停止转动时,箭头A所指区域的数字就是每次游戏所得的分数(箭头指向两个区域的边界时重新转动),且箭头A指向每个区域的可能性都是相等的.在一次家庭抽奖的活动中,要求每个家庭派一位儿童和一位成人先后分别转动一次游戏转盘,得分情况记为(a,b)(假设儿童和成人的得分互不影响,且每个家庭只能参加一次活动)
(Ⅰ)求某个家庭得分为(5,3)的概率;
(Ⅱ)若游戏规定:一个家庭的得分为参与游戏的两人得分之和,且得分大于等于8的家庭可以获得一份奖品.求某个家庭获奖的概率;
(Ⅲ)若共有5个家庭参加家庭抽奖活动.在(Ⅱ)的条件下,记获奖的家庭数为X,求X的分布列及数学期望.
(本题12分) 灯泡厂生产的白炽灯泡的寿命为X,已知X~N(1000,302)。要使灯泡的平均寿命为1000小时的概率为99.7%,问灯泡的最低寿命应控制在多少小时以上?
某出版社的11名工人中,有5人只会排版,4人只会印刷,还有2人既会排版又会印刷,现从11人中选4人排版,4人印刷,有多少种不同的选法?
设函数.
(1)若,且
,求
的值;
(2)若,记函数
在
上的最大值为
,最小值为
,求
时的
的取值范围;
(3)判断是否存在大于1的实数,使得对任意
,都有
满足等式:
,且满足该等式的常数
的取值唯一?若存在,求出所有符合条件的
的值;若不存在,请说明理由.
定义在上的函数
是最小正周期为2的奇函数, 且当
时,
.
(1)求在
上的解析式;
(2)用单调性定义证明在
上时减函数;
(3)当取何值时, 不等式
在
上有解.
已知函数,
(1)求函数的定义域和值域;
(2)设函数,若不等式
无解,求实数
的取值范围.