已知圆x2+y2+2ax-2ay+2a2-4a=0(0<a≤4)的圆心为C,直线l:y=x+m.
(1)若m=4,求直线l被圆C所截得弦长的最大值;
(2)若直线l是圆心下方的切线,当a在的变化时,求m的取值范围.
在△ABC中,角A、B、C的对边分别为a、b、c,且
(Ⅰ)求的值;
(Ⅱ)若,且
,求
的值.
已知离心率为的椭圆
上的点到左焦点
的最长距离为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)如图,过椭圆的左焦点任作一条与两坐标轴都不垂直的弦
,若点
在
轴上,且使得
为
的一条内角平分线,则称点
为该椭圆的“左特征点”,求椭圆的“左特征点”
的坐标.
设函数
(Ⅰ)若在点
处的切线与
轴和直线
围成的三角形面积等于
,求
的值;
(Ⅱ)当时,讨论
的单调性.
已知数列是等差数列,
是等比数列,且
,
,
.
(Ⅰ)求数列和
的通项公式
(Ⅱ)数列满足
,求数列
的前
项和
.
如图,AE⊥平面ABC,AE∥BD,AB=BC=CA=BD=2AE,F为CD中点.
(Ⅰ)求证:EF⊥平面BCD;
(Ⅱ)求二面角C-DE-A的大小.