从名男同学中选出
人,
名女同学中选出
人,并将选出的
人排成一排.
(1)共有多少种不同的排法?
(2)若选出的5人排队,男、女同学各排一排,共有多少种不同的排法?(用数字表示)
数列满足
.
(1)计算,
,
,
,由此猜想通项公式
,并用数学归纳法证明此猜想;
(2)若数列满足
,求证:
.
如图,在圆锥中,已知
,⊙O的直径
,
是
的中点,
为
的中点.
(1)证明:平面平面
;
(2)求二面角的余弦值.
甲、乙两位篮球运动员进行定点投篮,甲投篮一次命中的概率为,乙投篮一次命中的概率为
.每人各投4个球,两人投篮命中的概率互不影响.
(1)求甲至多命中1个球且乙至少命中1个球的概率;
(2)若规定每投篮一次命中得3分,未命中得分,求乙所得分数
的概率分布和数学期望.
先后掷两颗均匀的骰子,问
(1)至少有一颗是6点的概率是多少?
(2)当第一颗骰子的点数为3或6时,求两颗骰子的点数之和大于8的概率.
已知是函数
的两个极值点.
(1)若,
,求函数
的解析式;
(2)若,求实数
的最大值;
(3)设函数,若
,且
,求函数
在
内的最小值.(用
表示)