如图,一次函数(
为常数,且
)的图像与反比例函数
的图像交于
,
两点.
(1)求一次函数的表达式;
(2)若将直线向下平移
个单位长度后与反比例函数的图像有且只有一个公共点,求
的值.
如图,一条输电线路从A地到B地需要经过C地,图中AC=20千米,∠CAB=30°,∠CBA=45°,因线路整改需要,将从A地到B地之间铺设一条笔直的输电线路.
(1)求新铺设的输电线路AB的长度;(结果保留根号)
(2)问整改后从A地到B地的输电线路比原来缩短了多少千米?(结果保留根号)
补充完整三角形中位线定理,并加以(1)三角形中位线定理:三角形的中位线 ;
(2)已知:如图,DE是△ABC的中位线,求证:DE∥BC,DE=BC.
(为方便答题,可在答题卡上画出你认为必要的图形)
在Rt△ABC中,∠A=90°,AC =" AB" = 4,D,E分别是边AB,AC的中点.若等腰Rt△ADE绕点A逆时针旋转,得到等腰RtRt△AD1E1,设旋转角为α(0<α≤180°),记直线BD1与CE1的交点为P.
(1)如图1,当α=90°时,线段BD1的长等于 ,线段CE1的长等于 ;(直接填写结果)
(2)如图2,当α=135°时,求证:BD1 = CE1 ,且BD1⊥ CE1 ;
(3)求点P到AB所在直线的距离的最大值.(直接写出结果)
如图,已知△ABC.按如下步骤作图:
①以A为圆心,AB长为半径画弧;
②以C为圆心,CB长为半径画弧,两弧相交于点D;
③连结BD,与AC交于点E,连结AD,CD.
(1)求证:△ABC≌△ADC;
(2)若∠BAC =30°,∠BCA = 45°,AC = 4,求BE的长.
在Rt△ABC中,∠A=90°,AC=AB=4, D,E分别是AB,AC的中点.若等腰Rt△绕点A逆时针旋转,得到等腰Rt△
,设旋转角为
,记直线
与
的交点为P.
(1)如图1,当时,线段
的长等于 ,线段
的长等于 ;(直接填写结果)
(2)如图2,当时,求证:
,且
;
(3)①设BC的中点为M,则线段PM的长为 ;②点P到AB所在直线的距离的最大值为 .(直接填写结果)