游客
题文

设椭圆C:的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且
(1)求椭圆C的离心率;
(2)若过A、Q、F2三点的圆恰好与直线相切,求椭圆C的方程;
(3)在(2)的条件下,过右焦点F2作斜率为k的直线l与椭圆C交于M、N两点,在x轴上是否存在点P(m,0)使得以PM,PN为邻边的平行四边形是菱形,如果存在,求出m的取值范围,如果不存在,说明理由.

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

(本小题满分13分)在平面直角坐标系中,角的始边为轴的非负半轴,点在角的终边上,点在角的终边上,且.
(1)求
(2)求的坐标并求的值.

(本小题满分13分)等差数列满足,数列的前项和为,且,求数列的通项公式.

本题共14分)已知函数
(1)求的定义域;
(2)判定的奇偶性;
(3)是否存在实数,使得的定义域为时,值域为?若存在,求出实数的取值范围;若不存在,请说明理由。

(本题共13分)已知函数上满足,且当时,
(1)求的值;
(2)判定的单调性;
(3)若对任意x恒成立,求实数的取值范围。

(本题共12分)有一小型自来水厂,蓄水池中已有水450吨,水厂每小时可向蓄水池注水80吨,同时蓄水池向居民小区供水,小时内供水总量为吨。现在开始向池中注水并同时向居民小区供水,问:
(1)多少小时后蓄水池中的水量最少?
(2)如果蓄水池中存水量少于150吨时,就会出现供水紧张,那么有几个小时供水紧张?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号