已知数列{an}的前n项和为Sn,且向量a=(n,Sn),b=(4,n+3)共线.(1)求证:数列{an}是等差数列;(2)求数列的前n项和Tn.
分已知函数为大于零的常数。 (1)若函数内单调递增,求a的取值范围; (2)求函数在区间[1,2]上的最小值。
已知在时有极大值6,在时有极小值,求的值;并求在区间[-3,3]上的最大值和最小值.
已知:是一次函数,其图像过点,且,求的解析式。
已知复数,则当m为何实数时,复数z是 (1)实数;(2)虚数;(3)纯虚数;(4)零;(5)对应的点在第三象限
如图所示,流程图给出了无穷等差整数列,时,输出的时,输出的(其中d为公差) (I)求数列的通项公式; (II)是否存在最小的正数m,使得成立?若存在,求出m的值,若不存在,请说明理由。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号