11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题:小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻以相同的速度飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树跟有多远?
每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心疾首.今年某校为确保学生安全,开展了“远离溺水 珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用 表示,共分成四组: . , . , . , . ,下面给出了部分信息:
七年级10名学生的竞赛成绩是:99,80,99,86,99,96,90,100,89,82
八年级10名学生的竞赛成绩在 组中的数据是:94,90,94
七、八年级抽取的学生竞赛成绩统计表
年级 |
七年级 |
八年级 |
平均数 |
92 |
92 |
中位数 |
93 |
|
众数 |
|
100 |
方差 |
52 |
50.4 |
根据以上信息,解答下列问题:
(1)直接写出上述图表中 , , 的值;
(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);
(3)该校七、八年级共720人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀 的学生人数是多少?
如图,在 中, , 是 边上的中点,连结 , 平分 交 于点 ,过点 作 交 于点 .
(1)若 ,求 的度数;
(2)求证: .
抛物线 与 轴交于点 , (点 在点 的左边),与 轴交于点 ,点 是该抛物线的顶点.
(1)如图1,连接 ,求线段 的长;
(2)如图2,点 是直线 上方抛物线上一点, 轴于点 , 与线段 交于点 ;将线段 沿 轴左右平移,线段 的对应线段是 ,当 的值最大时,求四边形 周长的最小值,并求出对应的点 的坐标;
(3)如图3,点 是线段 的中点,连接 ,将 沿直线 翻折至△ 的位置,再将△ 绕点 旋转一周,在旋转过程中,点 , 的对应点分别是点 , ,直线 分别与直线 , 轴交于点 , .那么,在△ 的整个旋转过程中,是否存在恰当的位置,使 是以 为腰的等腰三角形?若存在,请直接写出所有符合条件的线段 的长;若不存在,请说明理由.
对任意一个四位数 ,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称 为“极数”.
(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;
(2)如果一个正整数 是另一个正整数 的平方,则称正整数 是完全平方数.若四位数 为“极数”,记 ,求满足 是完全平方数的所有 .
如图,在 中, ,点 在对角线 上, , 于点 , 的延长线交 于点 .点 在 的延长线上,且 ,连接 .
(1)若 , ,求 的长;
(2)求证: .