11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题:小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻以相同的速度飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树跟有多远?
“一方有难,八方支援”,在四川汶川大地震后,某市文华中学全体师生踊跃捐款,向灾区人民献爱心. 为了了解该校学生捐款情况,对其中60个学生捐款数x(元)分五组进行统计,第一组:1≤x≤5,第二组:6≤x≤10,第三组:11≤x≤15,第四组:16≤x≤20;,第五组:x≥21,并绘制如下频数分布直方图(假定每名学生捐款数均为整数),解答下列问题:
(1) 补全频数分布直方图;
(2) 这60个学生捐款数的中位数落在第____组;
(3)已知文华中学共有学生
1800人,请估算该校捐款数
不少于16元的学生人数.
如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF。能否由上面的已知条件证明AB∥ED?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件,添加到已知条件中,使AB∥ED成立,并给出证明。
供选择的三个条件(请从其中选择一个):
①AB=ED;
②BC=EF;
③∠ACB=∠DFE
如图,在方格纸上建立平面直角坐标系,线段AB的两个端点都在格点上,直线MN经过坐标原点,且点M的坐标是(1,2)。
(1)写出点A、B的坐标;
(2)求直线MN所对应的函数关系式;
(3)作出线段AB关于直线MN的对称图形。
如图,已知□ABCD的对角线AC、BD相交于点O,AC =12,BD=18,且△AOB的周长l=23,求AB的长.
(1)计算:
(2)解方程:.