在如图所示的几何体中,四边形ABCD是直角梯形,AD∥BC,AB⊥BC,AD=2,AB=3,BC=BE=7,△DCE是边长为6的正三角形.
(1)求证:平面DEC⊥平面BDE;
(2)求二面角C—BE—D的余弦值.
已知向量。
(1)求的最小正周期和单调减区间;
(2)将函数的图象向右平移
个单位,再将所得图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数
的图象,在△ABC中,角A、B、C的对边分别为
,若
,求
的值.
已知数列是等差数列,
是等比数列,
。
(1)求数列、
的通项公式;
(2)设数列中,
,求数列
的前n项和Sn.
如图,菱形ABCD的边长为2,∠BAD=60º, M为AB边上不与端点重合的动点,且CM与DA分别延长后交于点N,若以菱形的对角线所在直线为坐标轴建立平面直角坐标系,并设BM=2t (0<t<1).
(1)试用t表示与
,并求它们所成角的大小;
(2)设f(t)=·
,g(t)=at+4-2a(a>0),分别根据以下条件,求出实数
的取值范围:
①存在t1,t2∈(0,1),使得=g(t2);
②对任意t1∈(0,1),恒存在t2∈(0,1),使得=g(t2).
已知函数f(x)=x2·ln|x|(x≠0).
(1)求f(x)的最值;
(2)若关于x的方程f(x)=kx-1无实数解,求实数k的取值范围.