如图,菱形ABCD的边长为2,∠BAD=60º, M为AB边上不与端点重合的动点,且CM与DA分别延长后交于点N,若以菱形的对角线所在直线为坐标轴建立平面直角坐标系,并设BM=2t (0<t<1).

(1)试用t表示
与
,并求它们所成角的大小;
(2)设f(t)=
·
,g(t)=at+4-2a(a>0),分别根据以下条件,求出实数
的取值范围:
①存在t1,t2∈(0,1),使得
=g(t2);
②对任意t1∈(0,1),恒存在t2∈(0,1),使得
=g(t2).
在直角坐标系
上取两个定点
,再取两个动点
,且
.
(Ⅰ)求直线
与
交点的轨迹
的方程;
(Ⅱ)已知点
(
)是轨迹
上的定点,
是轨迹
上的两个动点,如果直线
的斜率
与直线
的斜率
满足
,试探究直线
的斜率是否是定值?若是定值,求出这个定值,若不是,说明理由.
如图,已知△AOB,∠AOB=
,∠BAO=
,AB=4,D为线段AB的中点.若△AOC是△AOB绕直线AO旋转而成的.记二面角B-AO-C的大小为
.
(Ⅰ)当平面COD⊥平面AOB时,求
的值;
(Ⅱ)当
∈[
,
]时,求二面角C-OD-B的余弦值的取值范围.
已知数列
满足:
(Ⅰ)求证:数列
是等比数列;
(Ⅱ)令
(
),如果对任意
,都有
,
求实数
的取值范围.
已知点
(Ⅰ)若
,求
的值;
(Ⅱ)若
,其中
为坐标原点,求
的值
如图,曲线C1是以原点O为中心,F1、F2为焦点的椭圆的一部分,曲线C2是以原点O为顶点,F2为焦点的抛物线的一部分,
是曲线C1和C2的交点.
(Ⅰ)求曲线C1和C2所在的椭圆和抛物线的方程;
(Ⅱ)过F2作一条与x轴不垂直的直线,分别与曲线C1、C2依次交于B、C、D、E四点,若G为CD中点,H为BE中点,问
是否为定值,若是,求出定值;若不是,请说明理由.