已知椭圆过点
,离心率为
,点
分别为其左右焦点.
(1)求椭圆的标准方程;
(2)若上存在两个点
,椭圆上有两个点
满足
三点共线,
三点共线,且
,求四边形
面积的最小值.
(本小题满分12分)
过椭圆的右焦点
作斜率
的直线交椭圆于
,
两点,且
与
共线.
(Ⅰ)求椭圆的离心率;
(Ⅱ)设为椭圆上任意一点,且
. 证明:
为定值.
(本小题满分12分)
已知函数.
(Ⅰ)当时,求关于
的不等式
解集;
(Ⅱ)当时,若
恒成立,求实数
的最大值.
(本小题满分12分)
已知等差数列{}的公差
,它的前
项和为
,若
,且
成等比数列.
(Ⅰ)求数列{}的通项公式;
(Ⅱ)若数列{}的前
项和为
,求证:
.
(本小题满分12分)
已知椭圆:
的离心率为
,其中左焦点
.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线与椭圆
交于不同的
两点,且线段
的中点
在圆
上,求
的值.
(本小题满分12分)
已知在等比数列中,
,且
是
和
的等差中项.
(Ⅰ)求数列的通项公式;
(Ⅱ)若数列满足
,求
的前
项和
.