如图,在正方体中,M,N,G分别是,,AD的中点,求证:(1)MN//平面ABCD;(2)MN⊥平面.
已知数列的前项和为,,是与的等差中项(). (Ⅰ)证明数列为等比数列; (Ⅱ)求数列的通项公式; (Ⅲ)是否存在正整数,使不等式()恒成立,若存在,求出的最大值;若不存在,请说明理由.
已知函数,. (Ⅰ)当,时,求的单调区间; (2)当,且时,求在区间上的最大值.
设数列满足:,,. (Ⅰ)求的通项公式及前项和; (Ⅱ)已知是等差数列,为前项和,且,.求的通项公式,并证明:.
已知向量,,设函数,. (Ⅰ)求的最小正周期与最大值; (Ⅱ)在中, 分别是角的对边,若的面积为,求的值.
已知函数,. (Ⅰ) 求的值; (Ⅱ) 若,,求.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号