心理学家分析发现视觉和空间能力与性别有关, 某数学兴趣小组为了 验 证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学 (男30女20), 给所有同学几何题和代数题各一题, 让各位同学自由选择一道题进行解答.选题情况如下表:(单位:人)
(Ⅰ)能否据此判断有97.5%的把握认为视觉和空间能力与性别有关?
(Ⅱ)经过多次测试后,甲每次解答一道几何题所用的时间在5—7分钟,乙每次解答一道几何题所用
的时间在6—8分钟,现甲、乙各解同一道几何题,求乙比甲先解答完的概率.
(Ⅲ)现从选择做几何题的8名女生中任意抽取两人对她们的答题情况进行全程研究,记甲、 乙两女
生被抽到的人数为X, 求X的分布列及数学期望E(X) .
附表及公式
已知圆直线
与圆
相切,且交椭圆
于
两点,
是椭圆的半焦距,
,
(Ⅰ)求的值;
(Ⅱ)O为坐标原点,若求椭圆
的方程;
(Ⅲ) 在(Ⅱ)的条件下,设椭圆的左右顶点分别为A,B,动点
,直线AS,BS与直线
分别交于M,N两点,求线段MN的长度的最小值.
如图是某重点中学学校运动场平面图,运动场总面积15000平方米,运动场是由一个矩形和分别以
、
为直径的两个半圆组成,塑胶跑道宽8米,已知塑胶跑道每平方米造价为150元,其它部分造价每平方米80元,
(Ⅰ)设半圆的半径(米),写出塑胶跑道面积
与
的函数关系式
;
(Ⅱ)由于受运动场两侧看台限制,的范围为
,问当
为何值时,运动场造价最低(第2问
取3近似计算).
如图,在底面为平行四边形的四棱柱中,
底面
,
,
,
.
(Ⅰ)求证:平面平面
;
(Ⅱ)若,求四棱锥
的体积.
设△ABC的三边a,b,c所对的角分别为A,B,C,
(Ⅰ)求A的值;
(Ⅱ)求函数的单调递增区间.
某市为增强市民的环境保护意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组,第2组
,第3组
,第4组
,第5组
,得到的频率分布直方图如图所示.
(Ⅰ)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?
(Ⅱ)在(1)的条件下,该市决定在第3,4组的志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.