已知椭圆的一个焦点
与抛物线
的焦点重合,且截抛物线的准线所得弦长为
,倾斜角为
的直线
过点
.
(Ⅰ)求该椭圆的方程;
(Ⅱ)设椭圆的另一个焦点为,问抛物线
上是否存在一点
,使得
与
关于直线
对称,若存在,求出点
的坐标,若不存在,说明理由.
已知函数.
(1)当时,如果函数
仅有一个零点,求实数
的取值范围;
(2)当时,试比较
与1的大小;
(3)求证:
已知,数列
是首项为
,公比也为
的等比数列,令
(Ⅰ)求数列的前
项和
;
(Ⅱ)当数列中的每一项总小于它后面的项时,求
的取值范围.
已知向量,
,
(Ⅰ)若,求
的值;
(Ⅱ)在中,角
的对边分别是
,且满足
,求函数
的取值范围.
关于的不等式
.
(Ⅰ)当时,解此不等式;
(Ⅱ)设函数,当
为何值时,
恒成立?
在平面直角坐标系xoy中,曲线C1的参数方程为(
,
为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2是圆心在极轴上,且经过极点的圆.已知曲线C1上的点M(1,
)对应的参数j=
,曲线C2过点D(1,
).
(I)求曲线C1,C2的直角坐标方程;
(II)若点A(r1,q),B(r2,q+)在曲线C1上,求
的值.