已知函数,. (1)求的最小值(用表示); (2)关于的方程有解,求实数的取值范围.
已知函数 (I)若是的极值点,求的极值; (Ⅱ)若函数是上的单调递增函数,求实数的取值范围.
已知数列满足:, (Ⅰ)计算的值; (Ⅱ)由(Ⅰ)的结果猜想的通项公式,并用数学归纳法证明你的结论.
一边长为的正方形铁片,铁片的四角各截去一个边长为的小正方形,然后做成一个无盖方盒. (Ⅰ)试把方盒的体积表示为的函数; (Ⅱ)多大时,方盒的体积最大?
已知是全不相等的正实数,证明:.
如图,抛物线与轴交于两点,点在抛物线上(点在第一象限),∥.记,梯形面积为. (1)求面积以为自变量的函数式; (2)若,其中为常数,且,求的最大值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号