已知函数在
处的切线
与直线
垂直,函数
.
(1)求实数的值;
(2)若函数存在单调递减区间,求实数b的取值范围;
(3)设是函数
的两个极值点,若
,求
的最小值.
设函数
(1)设,
,证明:
在区间
内存在唯一的零点;
(2) 设,若对任意
,有
,求
的取值范围;
(3)在(1)的条件下,设是
在
内的零点,判断数列
的增减性.
已知函数.
(1)若函数的图象在
处的切线斜率为
,求实数
的值;
(2)在(1)的条件下,求函数的单调区间;
(3)若函数在
上是减函数,求实数
的取值范围.
已知椭圆的离心率为
,以原点为圆心,椭圆的短半轴为半径的圆与直线
相切,直线
与椭圆C相交于A、B两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求的取值范围;
定义在R上的奇函数有最小正周期4,且
时,
。
(1)求在
上的解析式;
(2)判断在
上的单调性,并给予证明;
(3)当为何值时,关于方程
在
上有实数解?
我省某景区为提高经济效益,现对某一景点进行改造升级,从而扩大内需,提高旅游增加值,经过市场调查,旅游增加值万元与投入
万元之间满足:
为常数。当
万元时,
万元;
当万元时,
万元。(参考数据:
)
(1)求的解析式;
(2)求该景点改造升级后旅游利润的最大值。(利润=旅游增加值-投入)。