如图,为一直角三角形草坪,其中
,
米,
米,为了重建草坪,设计师准备了两套方案:
方案一:扩大为一个直角三角形,其中斜边过点
,且与
平行,
过点
,
过点
;
方案二:扩大为一个等边三角形,其中过点
,
过点
,
过点
.
(1)求方案一中三角形面积
的最小值;
(2)求方案二中三角形面积
的最大值.
设函数,
(1)求函数的单调区间;
(2)若当时,不等式
恒成立,求实数
的取值范围;
(3)若关于的方程
在区间
上恰好有两个相异的实根,求实数
的取值范围.
如图,已知焦点在轴上的椭圆
经过点
,直线
交椭圆于不同的两点.
(1)求该椭圆的标准方程;
(2)求实数的取值范围;
(3)是否存在实数,使△
是以
为直角的直角三角形,若存在,求出
的值,若不存,请说明理由.
某商品每件成本9元,售价为30元,每星期卖出144件. 如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值(单位:元,
)的平方成正比.
已知商品单价降低2元时,一星期多卖出8件.
(1)将一个星期的商品销售利润表示成的函数;
(2)如何定价才能使一个星期的商品销售利润最大?
如图,三棱柱的底面是边长为2的正三角形,且侧棱垂直于底面,侧棱长是,D是AC的中点。
(1)求证:平面
;
(2)求二面角的大小;
(3)求直线与平面
所成的角的正弦值.
甲、乙两药厂生产同一型号药品,在某次质量检测中,两厂各有5份样品送检,检测的平均得分相等(检测满分为100分,得分高低反映该样品综合质量的高低).成绩统计用茎叶图表示如下:
甲 |
乙 |
|
9 8 |
8 |
4 8 9 |
2 1 0 |
9 |
![]() |
(1)求;
(2)某医院计划采购一批该型号药品,从质量的稳定性角度考虑,你认为采购哪个药厂的产品
比较合适?
(3)检测单位从甲厂送检的样品中任取两份作进一步分析,在抽取的两份样品中,求至少有一份得分在(90,100]之间的概率.