兰新铁路的通车,圆了全国人民的一个梦,坐上火车去观赏青海门源百里油菜花海,感受大美青海独特的高原风光,暑假某校准备组织学生、老师到门源进行社会实践,为了便于管理,师生必须乘坐在同一列高铁上,根据报名人数,若都买一等座单程火车票需2340元,若都买二等座单程火车票花钱最少,则需1650元:
西宁到门源的火车票价格如下表
运行区间 |
票价 |
|
|
上车站 |
下车站 |
一等座 |
二等座 |
西宁 |
门源 |
36元 |
30元 |
(1)参加社会实践的学生、老师各有多少人?
(2)由于各种原因,二等座火车票单程只能买x张(参加社会实践的学生人数<x<参加社会实践的总人数),其余的须买一等座火车票,在保证每位参与人员都有座位坐并且总费用最低的前提下,请你写出购买火车票的总费用(单程)y与x之间的函数关系式.
如图,八一广场要设计一个矩形花坛,花坛的长、宽分别为200 m、
120 m,花坛中有一横两纵的通道,横、纵通道的宽度分别为3x m、2x m.
(1)用代数式表示三条通道的总面积S;当通道总面积为花坛总面积的时,求横、纵通道的宽分别是多少?
(2)如果花坛绿化造价为每平方米3元,通道总造价为3168 x元,那么横、纵通道的宽分别为多少米时,花坛总造价最低?并求出最低造价.
(以下数据可供参考:852 = 7225,862 = 7396,872 = 7569)
如图,已知正比例函数y = ax(a≠0)的图象与反比例函致(k≠0)的图象的一个交点为A(-1,2-k2),另—个交点为B,且A、B关于原点O对称,D为OB的中点,过点D的线段OB的垂直平分线与x轴、y轴分别交于C、E.
(1)写出反比例函数和正比例函数的解析式;
(2)试计算△COE的面积是△ODE面积的多少倍.
绵阳农科所为了考察某种水稻穗长的分布情况,在一块试验田里随机抽取了50个谷穗作为样本,量得它们的长度(单位:cm).对样本数据适当分组后,列出了如下频数分布表:
穗长 |
4.5≤x<5 |
5≤x<5.5 |
5.5≤x<6 |
6≤x<6.5 |
6.5≤x<7 |
7≤x<7.5 |
频数 |
4 |
8 |
12 |
13 |
10 |
3 |
(1)在图1、图2中分别出频数分布直方图和频数折线图;
(2)请你对这块试验田里的水稻穗长进行分析;并计算出这块试验田里穗长在5.5≤x<7范围内的谷穗所占的百分比.
图1图2
已知关于x的一元二次方程x2 = 2(1-m)x-m2 的两实数根为x1,x2.
(1)求m的取值范围;
(2)设y = x1 + x2,当y取得最小值时,求相应m的值,并求出最小值.
如图,抛物线与
轴交于
两点,与
轴交于
点.
(1)请求出抛物线顶点的坐标(用含
的代数式表示),
两点的坐标;
(2)经探究可知,与
的面积比不变,试求出这个比值;
(3)是否存在使为直角三角形的抛物线?若存在,请求出;如果不存在,请说明
理由.