甲乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.
(1)求从袋中随机摸出一球,标号是1的概率;
(2)从袋中随机摸出一球后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜;试分析这个游戏是否公平?请说明理由.
如图,三角形ABC中,BE平分ABC,
1=
2,
C=50°,求
AED的度数
计算:(1);(2)(3a+5b)(-3a-8b)
解方程组:(1);(2)
如图所示,已知∠1=∠2,∠3=85°,求∠4的度数.
解:∵∠1=∠2()
∴a∥b()
∴∠3=∠4()
∵∠3=85°()
∴∠4=85°
如图(1)线段AB、CD相交于点O,连接AD、CB.如图(2),在图(1)的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.
试解答下列问题:
(1)在图(1)中,请直接写出∠A、∠B、∠C、∠D之间的等量关系;
(2)在图(2)中,若∠D=40°,∠B=30°,试求∠P的度数;(写出解答过程)