某市政府欲在如图所示的矩形的非农业用地中规划出一个休闲娱乐公园(如图中阴影部分),形状为直角梯形(线段和为两条底边),已知,,,其中曲线是以为顶点、为对称轴的抛物线的一部分.(1)以为原点,所在直线为轴建立直角坐标系,求曲线所在抛物线的方程;(2)求该公园的最大面积.
已知c>0,设命题p:函数y=cx为减函数.命题q:当x∈[,2]时,函数f(x)=x+>恒成立.如果p或q为真命题,p且q为假命题.求c的取值范围.
已知A={x|x2≥9},B={x|≤0},C={x||x-2|<4}. (1)求A∩B及A∪C; (2)若U=R,求A∩∁U(B∩C)
已知函数 ①当时,求曲线在点处的切线方程。 ②求的单调区间
已知函数,问是否存在实数使在上取最大值3,最小值-29,若存在,求出的值;不存在说明理由。
已知函数,函数 ①当时,求函数的表达式; ②若,函数在上的最小值是2 ,求的值; ③在②的条件下,求直线与函数的图象所围成图形的面积.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号