某市政府欲在如图所示的矩形的非农业用地中规划出一个休闲娱乐公园(如图中阴影部分),形状为直角梯形
(线段
和
为两条底边),已知
,
,
,其中曲线
是以
为顶点、
为对称轴的抛物线的一部分.
(1)以为原点,
所在直线为
轴建立直角坐标系,求曲线
所在抛物线的方程;
(2)求该公园的最大面积.
已知圆C与y轴相切,圆心在直线x-3y=0上,且在直线y=x上截得的弦长2.求 圆C的方程.
已知函数(常数
.
(Ⅰ) 当时,求曲线
在点
处的切线方程;
(Ⅱ)讨论函数在区间
上零点的个数(
为自然对数的底数).
数列首项
,前
项和
与
之间满足
(1)求证:数列是等差数列
(2)求数列的通项公式
(3)设存在正数,使
对于一切
都成立,求
的最大值。
已知圆方程为:
.
(1)直线过点
,且与圆
交于
、
两点,若
,求直线
的方程;
(2)过圆上一动点
作平行于
轴的直线
,设
与
轴的交点为
,若向量
(
为原点),求动点
的轨迹方程,并说明此轨迹是什么曲线.
( 14分)如图,已知矩形ABCD中,AB=10,BC=6,将矩形沿对角线BD把△ABD折起,使A移到点,且
在平面BCD上的射影O恰好在CD上.
(Ⅰ)求证:;
(Ⅱ)求证:平面平面
;
(Ⅲ)求三棱锥的体积.