已知椭圆的焦点在轴上,离心率等于,且过点.(Ⅰ)求椭圆的标准方程;(Ⅱ)过椭圆的右焦点作直线交椭圆于两点,交轴于点,若,求证:为定值.
(本小题满分10分)已知f(x)=2x+a,g(x)=(3+x2),若g[f(x)]=x2+x+1,求a的值。
.(本小题满分12分) 已知函数的两个不同的零点为
(本小题满分12分) 设关于的方程 (Ⅰ)若方程有实数解,求实数的取值范围; (Ⅱ)当方程有实数解时,讨论方程实根的个数,并求出方程的解.
(本小题满分12分) 在平面直角坐标系中,O为坐标原点,A、B、C三点满足 (Ⅰ)求证:A、B、C三点共线; (Ⅱ)求的值; (Ⅲ)已知、, 的最小值为,求实数的值.
(本小题满分12分) 已知是奇函数 (Ⅰ)求的值,并求该函数的定义域; (Ⅱ)根据(Ⅰ)的结果,判断在上的单调性,并给出证明.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号