在数列中,
(1)试判断数列是否为等差数列;
(2)设满足
,求数列
的前n项和
;
(3)若,对任意n ≥2的整数恒成立,求实数
的取值范围.
(本小题满分12分)如图,三角形中,
,
是边长为
的正方形,平面
⊥平面
,若
分别是
的中点.
(1)求证:平面
;
(2)求证:⊥平面
;
(3)求几何体的体积.
(本小题满分12分)甲乙两人用四张扑克牌(红桃2,红桃3,红桃4,方片4)玩游戏,将牌洗匀后,背面朝上,按如下规则抽取:甲先抽,乙后抽,抽取的牌不放回,各抽取一张。
写出甲乙两人抽到牌的所有情况;
若甲抽到红桃3,则乙抽出的牌的牌面数字比3大的概率是多少?
甲乙约定:若甲抽出的牌的牌面数字比乙大,则甲胜;反之,则乙胜.你认为此游戏是否公平?说明你的理由.
(本小题满分12分)在中,角
的对边分别为
,
,
,且
.
(1)求锐角的大小;
(2)若,求
面积的最大值.
已知函数.
(1)当时,求证:
;
(2)当时,
恒成立,求实数
的值.
已知椭圆的离心率为
,长轴
,短轴
,四边形
的面积为
.
(1)求椭圆的方程;
过椭圆的右焦点的直线
交椭圆于
,直线
.
①证明:,并求直线
的方程;②证明:以
为直径的圆过右焦点
.