设计一个商标图案(如图阴影部分),其中O为半圆的圆心,AB=a,BC=b,
(1)用关于a,b的代数式表示商标图案的面积S;
(2)求当a=6cm,b=4cm时S的值.(本题结果都保留π)
在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中红球有2个,黄球有1个,蓝球有1个.现有一张电影票,小明和小亮决定通过摸球游戏定输赢(赢的一方得电影票).游戏规则是:两人各摸1次球,先由小明从纸箱里随机摸出1个球,记录颜色后放回,将小球摇匀,再由小亮随机摸出1个球并记录颜色.若两人摸到的球颜色相同,则小明赢,否则小亮赢.这个游戏规则对双方公平吗?请你利用树状图或列表法说明理由
如图所示,在方格纸中,△ABC的三个顶点及D,E,F,G,H五个点分别位于小正方形的顶点上.
(1)现以D,E,F,G,H中的三个点为顶点画三角形,在所画的三角形中与△ABC不全等但面积相等的三角形是 (只需要填一个三角形);
(2)先从D,E两个点中任意取一个点,再从F,G,H三个点中任意取两个不同的点,以所取的这三个点为顶点画三角形,画树状图求所画三角形与△ABC面积相等的概率.
下列问题哪些是必然事件?哪些是不可能事件?哪些是随机事件?
(1)太阳从西边落山;
(2)某人的体温是50°;
(3)(其中
,
都是实数);
(4)水往低处流;
(5)三个人性别各不相同;
(6)一元二次方程无实数解;
(7)经过有信号灯的十字路口,遇见红灯.
在如图中,每个正方形有边长为1 的小正方形组成:
(1)观察图形,请填写下列表格:
正方形边长 |
1 |
3 |
5 |
7 |
… |
n(奇数) |
黑色小正方形个数 |
… |
|||||
正方形边长 |
2 |
4 |
6 |
8 |
… |
n(偶数) |
黑色小正方形个数 |
… |
(2)在边长为n(n≥1)的正方形中,设黑色小正方形的个数为P1,白色小正方形的个数为P2,问是否存在偶数n,使P2=5P1?若存在,请写出n的值;若不存在,请说明理由.
如图所示,在△ABC中,∠C=90°,AC=6cm,BC=8cm,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从C点出发沿CB边向点B以2cm/s的速度移动.
(1)如果P、Q同时出发,几秒钟后,可使△PCQ的面积为8平方厘米?
(2)点P、Q在移动过程中,是否存在某一时刻,使得△PCQ的面积等于△ABC的面积的一半.若存在,求出运动的时间;若不存在,说明理由.