游客
题文

设函数fn(x)=xn+bx+c(n∈N,b,c∈R).
(1)设n≥2,b=1,c=-1,证明:fn(x)在区间内存在唯一零点;
(2)设n=2,若对任意x1,x2∈[-1,1],有|f2(x1)-f2(x2)|≤4,求b的取值范围;
(3)在(1)的条件下,设xn是fn(x)在内的零点,判断数列x2,x3,…,xn,…的增减性.

科目 数学   题型 解答题   难度 较易
知识点: 不定方程和方程组
登录免费查看答案和解析
相关试题

选修4-5:不等式选讲(本小题10分)
若关于的不等式在R上恒成立,求的最大值。

已知直线的极坐标方程为圆M的参数方程为
(其中为参数)。
(1)将直线的极坐标方程化为直角坐标方程;
(2) 求圆M上的点到直线的距离的最小值。

(本小题满分12分)
已知函数的图象过坐标原点O,且在点处的切线的斜率是
(1)求实数的值;
(2)求在区间上的最大值;
(3)对任意给定的正实数,曲线上是否存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上?说明理由。

(本小题满分12分)
已知等差数列的首项公差且第二项、第五项、第十四项分别是等比数列的第二项、第三项、第四项。
(1)求数列与数列的通项公式;
(2)设数列对任意正整数均有成立,
(3)求数列的前项和

(本小题满分12分)
某运动项目设置了难度不同的甲、乙两个系列,每个系列都有K和D两个动作。比赛时每位运动员自选一个系列完成,两个动作得分之和为该运动员的成绩。
假设每个运动员完成每个系列中的K和D两个动作的得分是相互独立的。根据赛前训练的统计数据,某运动员完成甲系列和乙系列中的K和D两个动作的情况如下表:
表1:甲系列表2:乙系列

动作
K动作
D动作
得分
100
80
40
10
概率




动作
K动作
D动作
得分
90
50
20
0
概率





现该运动员最后一个出场,之前其他运动员的最高得分为115分。
(1)若该运动员希望获得该项目的第一名,应选择哪个系列?说明理由。
并求其获得第一名的概率。
(2)若该运动员选择乙系列,求其成绩的分布列及数学期望

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号