已知函数.
(1)讨论函数的单调性;
(2)若对于任意的恒成立,求
的范围.
为了考察冰川的融化状况,一支科考队在某冰川上相距8 的 两点各建一个考察基地.视冰川面为平面形,以过 两点的直线为 轴,线段 的的垂直平分线为 轴建立平面直角坐标系在直线 的右侧,考察范围为到点 的距离不超过 区域;在直线 的左侧,考察范围为到 两点的距离之和不超过 区域.
(Ⅰ)求考察区域边界曲线的方程;
(Ⅱ)如图所示,设线段
是冰川的部分边界线(不考虑其他边界线),当冰川融化时,边界线沿与其垂直的方向朝考察区域平行移动,第一年移动0.2
,以后每年移动的距离为前一年的2倍,求冰川边界线移动到考察区域所需的最短时间.
如图所示,在正方体 中, 是棱 的中点.
(Ⅰ)求直线
的平面
所成的角的正弦值;
(II)在棱
上是否存在一点
,使
平面
,证明你的结论.
下图是某城市通过抽样得到的居民某年的月均用水量(单位:吨)的频率分布直方图
(Ⅰ)求直方图中
的值
(II)若将频率视为概率,从这个城市随机抽取3位居民(看作有放回的抽样),求月均用水量在3至4吨的居民数
的分布列和数学期望。
如图,在五棱锥 中, , , , , , , ,三角形 是等腰三角形.
(Ⅰ)求证:
;
(Ⅱ)求直线
与平面
所成角的大小;
(Ⅲ)求四棱锥
的体积.
如图,已知椭圆
的离心率为
,以该椭圆上的点和椭圆的左、右焦点
为顶点的三角形的周长为
.一等轴双曲线的顶点是该椭圆的焦点,设
为该双曲线上异于顶点的任一点,直线
和
与椭圆的交点分别为
和
.
(Ⅰ)求椭圆和双曲线的标准方程;
(Ⅱ)设直线
、
的斜率分别为
、
,证明
;
(Ⅲ)是否存在常数
,使得
恒成立?若存在,求
的值;若不存在,请说明理由.