游客
题文

已知圆心为的圆方程为,点是直线上的一动点,过点作圆的切线,切点为
(1)当切线的长度为时,求点的坐标;
(2)若的外接圆为圆,试问:当在直线上运动时,圆是否过定点?若存在,求出所有的定点的坐标;若不存在,说明理由.
(3)求线段长度的最小值.

科目 数学   题型 解答题   难度 较难
知识点: 圆的方程的应用
登录免费查看答案和解析
相关试题

已知平行四边形ABCD(图1)中,AB=4,BC=5,对角线AC=3,将三角形ACD沿AC折起至PAC位置(图2),使二面角为600,G,H分别是PA,PC的中点.

(1)求证:PC平面BGH;
(2)求平面PAB与平面BGH夹角的余弦值.

某商家推出一款简单电子游戏,弹射一次可以将三个相同的小球随机弹到一个正六边形的顶点与中心共七个点中的三个位置上(如图),用S表示这三个球为顶点的三角形的面积.规定:当三球共线时,S=0;当S最大时,中一等奖,当S最小时,中二等奖,其余情况不中奖,一次游戏只能弹射一次.

(1)求甲一次游戏中能中奖的概率;
(2)设这个正六边形的面积是6,求一次游戏中随机变量S的分布列及期望值.

已知ABC中,角A,B,C的对边分别为a,b,c, 若向量与向量共线.
(1)求角C的大小;
(2)若,求a,b的值.

已知为函数图象上一点,O为坐标原点,记直线的斜率
(Ⅰ)若函数在区间上存在极值,求实数m的取值范围;
(Ⅱ)设,若对任意恒有,求实数的取值范围.

在平面直角坐标系中,已知分别是椭圆的左、右焦点,椭圆与抛物线有一个公共的焦点,且过点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线与椭圆相交于两点,若(为坐标原点),试判断直线与圆的位置关系,并证明你的结论.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号