已知圆心为的圆方程为
,点
是直线
上的一动点,过点
作圆
的切线
,切点为
.
(1)当切线的长度为
时,求点
的坐标;
(2)若的外接圆为圆
,试问:当
在直线
上运动时,圆
是否过定点?若存在,求出所有的定点的坐标;若不存在,说明理由.
(3)求线段长度的最小值.
(本小题满分12分)函数f(x)=4x2-4ax+a2-2a+2,其中[0,2]
(1)当时,求函数
在给定区间上的最值;
(2)若在给定区间上的有最小值3,求a的值.
(本小题满分12分)设函数是定义在
上的奇函数,且
(1)求函数的解析式;
(2)若f(x)在[0,1)上为增函数,求不等式的解集
(本小题满分12分)(1)函数f(x)是R上的偶函数,且当x>0时,函数的解析式为f(x)=-1.求当x<0时,函数的解析式.
(2)若满足关系式
,求
.
(本小题满分10分)已知集合,若
,求实数a的值.
(本小题满分14分))
某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示。
(Ⅰ)写出图一表示的市场售价与时间的函数关系式;写出图二表示的种植成本与上市时间的函数关系式
;
(Ⅱ)假如设定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?(注:市场售价和种植成本的单位:元/102㎏,时间单位:天)