已知椭圆,椭圆
以
的长轴为短轴,且与
有相同的离心率.
(1)求椭圆的方程;
(2)设O为坐标原点,点A,B分别在椭圆和
上,
,求直线
的方程.
已知函数
(I) 解关于的不等式
(II)若函数的图象恒在函数
的上方,求实数
的取值范围。
以直角坐标系的原点O为极点,轴的正半轴为极轴,已知点P的直角坐标为(1,-5),点M的极坐标为(4,
),若直线
过点P,且倾斜角为
,圆C以M为圆心,4为半径。
(I)求直线的参数方程和圆C的极坐标方程。
(II)试判定直线与圆C的位置关系。
如图AB为圆O直径,P为圆O外一点,过P点作PC⊥AB,垂是为C,PC交圆O于D点,PA交圆O于E点,BE交PC于F点。
(I)求证:∠PFE=∠PAB(II)求证:CD2=CF·CP
已知函数
(I)当时,求
在[1,
]上的取值范围。
(II)若在[1,
]上为增函数,求a的取值范围。
已知平面上动点P()及两个定点A(-2,0),B(2,0),直线PA、PB的斜率分别为
、
且
(I)求动点P所在曲线C的方程。
(II)设直线与曲线C交于不同的两点M、N,当OM⊥ON时,求点O到直线
的距离。(O为坐标原点)