设,
,Q=
;若将
,lgQ,lgP适当排序后可构成公差为1的等差数列
的前三项.
(1)试比较M、P、Q的大小;
(2)求的值及
的通项;
(3)记函数的图象在
轴上截得的线段长为
,
设,求
,并证明
.
定义在上的函数
,当
时,
,且对任意的
,有
,
(Ⅰ)求证:;
(Ⅱ)求证:对任意的,恒有
;
(Ⅲ)若,求
的取值范围.
已知函数,
.
(Ⅰ)求函数的最小值和最小正周期;
(Ⅱ)设的内角
、
、
的对边分别为
、
、
,满足
,
且
,求
、
的值.
一个袋中装有大小相同的球10个,其中红球8个,黑球2个,现从袋中有放回地取球,每次随机取1个. 求:
(Ⅰ)连续取两次都是红球的概率;
(Ⅱ)如果取出黑球,则取球终止,否则继续取球,直到取出黑球,取球次数最多不超过4次,求取球次数的概率分布列及期望.
如图,在四棱锥中,底面ABCD是正方形,侧棱
底面ABCD,
,E是PC的中点.
(Ⅰ)证明 平面EDB;
(Ⅱ)求EB与底面ABCD所成的角的正切值.
设是由
个实数组成的
行
列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.
(1)数表如表1所示,若经过两“操”,使得到的数表每行的各数之和与每列的各数之和均为非负实数,请写出每次“操作”后所得的数表(写出一种方法即可);表1
1 |
2 |
3 |
![]() |
![]() |
1 |
0 |
1 |
(2)数表如表2所示,若必须经过两次“操作”,才可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数
的所有可能值;表2
(3)对由个实数组成的
行
列的任意一个数表
,能否经过有限次“操作”以后,使得到的数表每行的各数之和与每列的各数之和均为非负实数?请说明理由.